

智能直流马达专用芯片,内部集成了三相前置驱动器、32-bit MO 处理器

- 工作电压范围:
 - HVCC:10 \sim 28V
 - AVCC:V5
 - 一 内置仅为 MCU 供电的 5V LDO
- 工作温度范围: -40℃~85℃
- 32-bit CPU Core
 - 最高 42MHz 工作频率
 - 一 单周期乘除法
- 存储器
 - 32KB Flash
 - 4K SRAM
- 电机专用协处理器
 - PI/SQRT/SVPWM/CORDIC/DIV
- 时钟、复位和电源管理
 - 2.5V~5.5V 供电和 I/O 引脚
 - 上电/掉电复位 (POR/LBOR)
 - 一 内建出厂校准的 42MHz 的 RC 振荡器
 - 一 内建出厂校准的 32KHz 的 RC 振荡器
 - 40Mhz 晶体振荡器
 - 独立看门狗
- 低功耗
 - Hold 模式
 - Sleep 模式
- ADC
 - 1us 转换时间
 - 12 bit SAR ADC
 - ADC 输入范围: 0∼AVCC
 - 支持外部 11 路 ADC 输入

DMA

- 一 2 个独立可配置信道
- 支持的外设: UART、I2C、Timer、SRAM、 Soft request、SAR-ADC

GPIO

- 默认高阻态
- 支持 TTL 电平
- 具有输入滤波功能

● 调试模式

- 串行单线调试 (SWD)

● 多达6个定时器

- 1个16位5通道高级控制定时器,有5通道PWM输出,死区生成和紧急停止功能
- 系统时间定时器: 24 位自减型计数器
- 4个通用定时器 16 位 Timer0-3

● 2个通信接口

- I2C接口数: 1
- UART 接口数: 1
- 3 个差分输入 PGA
- 2个比较器
- 内置三相前置驱动器
 - P/N MOS 三相半桥输出
 - 栅极输出 10V 到 PMOS (VCC > 14V)

采用绿色封装: TSSOP28

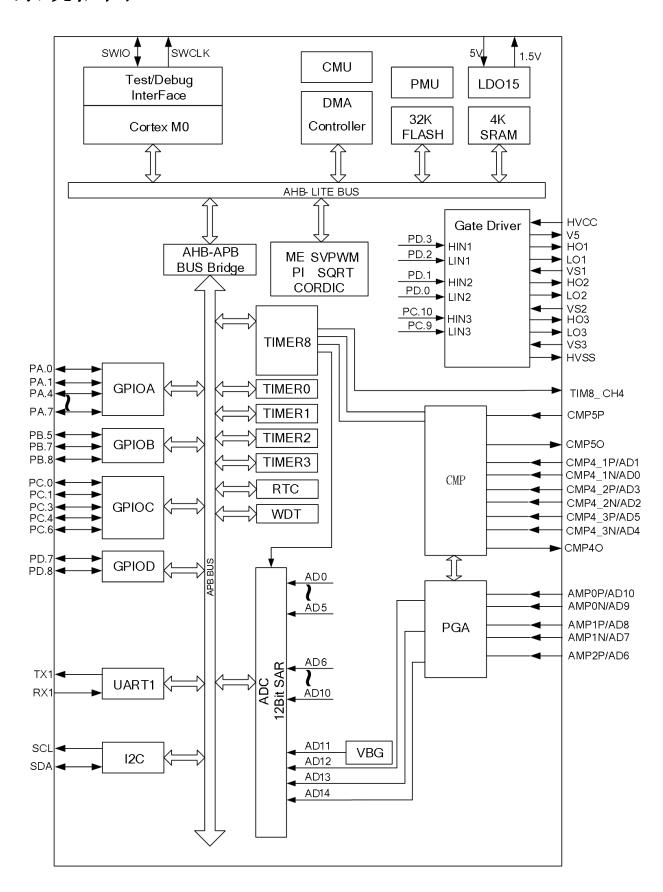
版本历史

版本号	改动内容
V1.0	Release
V1.1	引脚排列图更新
V1.2	系统框图预驱部分引脚位置更新
V1.3	系统框图 Gate Driver 部分增添内部脚位连接
V1.4	在简介部分修改时钟相关配置模式

目錄

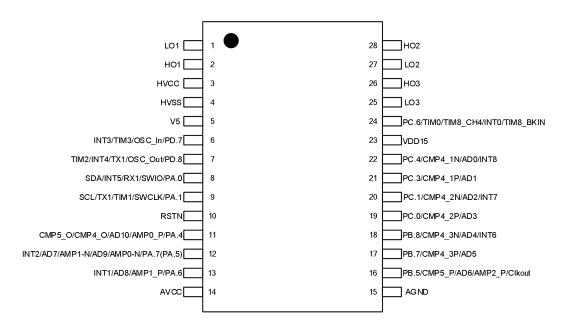
版本历史	<u> </u>	2
简介		4
系统框图	4	5
引脚排列	Y	6
引脚定义	۲	7
缩略语		8
存储器明	央射图	9
时钟框图	<u> </u>	10
电气特性	<u> </u>	11
1.1	绝对最大额定值	11
1.2	通用工作条件	11
1.3	上电和掉电时的工作条件	12
1.4	内嵌复位和电源控制模块特性	12
1.5	内置参考电压	12
1.6	供电电流特性	13
1.7	外部时钟源特性	13
1.8	内部时钟源特性	14
1.9	存储器特性	15
1.10	EMC 特性	16
1.11	绝对最大值(电气敏感性)	16
1.12	I/O 端口特性	16
1.13	NRST 引脚特性	17
1.14	TIM 定时器特性	18
1.15	12 位 ADC 特性	18
1.16	比较器 CMP	19
1.17	PGA	20
1.18	VDD15	21
1.19	三相驱动器	21
村准図		22

简介


RX32SD22 是高性能、低功耗、多功能马达专用 32 位的 MCU 芯片,内部集成了 Cortex MO 的处理器,更特别是集成电机专用协同处理器,内置马达专用硬件算法,比纯粹软件运算提供更快速的运算效能,让马达运转的更顺畅更有效率。

芯片更整合了 OP-AMP、Comparator, 在使用上能更节省布局空间, 更节省成本。功能上还包含时钟管理、电源管理、高频 RC、低频 RC 等单元, 以及 NVIC 和 DEBUG 调试功能。

- 工作电压范围: 2.5V~5.5V
- 工作温度范围: -40℃~85℃
- 采用的 Cortex MO 处理器、32K Flash、4K SRAM
- 高速度: CPU 最高工作频率达到 42MHz
- 低功耗: Hold 模式 Max TBD uA, Sleep 模式 Max 3uA
- 高精度温度传感器: -40 度 ~ +85 度温度范围内,温度传感器一致性优于正负 5 度
- 正常模式下,WDT模块不可关闭,保证系统可靠运行。在Sleep/hold模式下,可软件关闭WDT模块
- 三相驱动器:可驱动 P/N MOS,内置一个 5V/40mA LDO 为 MCU 或其它模块供电
- 采用绿色封装: TSSOP28


系统框图

引脚排列

TSSOP28

28 PIN	标识	引脚 类型	濾波	第一复用 功能	第二复用 功能	第三复用 功能	第四复用 功能	引脚说明
1	LO1	0						Low side gate driver outputs
2	HO1	0						High side gate driver outputs
3	HVCC	Р						Gate Drive Power 15V
4	HVSS	G						Gate Drive GND
5	V5	Р						5V电源输出,需外接0.1uF滤波电容,内部与VCC相连
6	PD.7	1/0	50ns	OSC_In	TIM3	INT3		GPIO\高频晶振时钟输入\Timer输出输入\外部中断,滤波50ns
7	PD.8	5		OSC_Out	TX1	INT4	TIM2	GPIO\高频晶振时钟输出\TX\外部中断,滤波50ns\Timer输出输入
8	PA.0	5	50ns	SWIO	RX1	INT5	SDA	GPIO\SWIO\RX\外部中断,滤波50ns\SDA
9	PA.1	1/0		SWCLK	TIM1	TX1	SCL	GPIO\SWCLK\Timer输出输入\TX\SCL
10	RSTN		2us					复位信号(低电平有效·内部上拉)·滤波2us
11	PA.4	5		AMP0_P\AD10		CMP4_O	CMP5_O	GPIO\OP-AMP正端输入\ADC信号输入\比较器4输出\比较器5输出
12	PA.7(PA.5)	5		AMP0_N\AD9\AMP1_N\AD7		INT2		GPIO\OP-AMP负端输入\ADC信号输入\外部中断,滤波50ns
13	PA.6	5		AMP1_P\AD8		INT1		GPIO\OP-AMP正端输入\ADC信号输入\外部中断,滤波50ns
14	AVCC	Р						芯片模拟电源
15	AGND	O						芯片模拟地
16	PB.5	0/		CMP5_P\AD6\AMP2_P			Clkout	GPIO\比较器正端输入\ADC信号输入\OP-AMP正端输入\Clkout
17	PB.7	1/0		CMP4_3P\AD5				GPIO\比较器正端输入\ADC信号输入
18	PB.8	1/0	50ns	CMP4_3N\AD4		INT6		GPIO\比较器负端输入\ADC信号输入\外部中断,滤波50ns
19	PC.0	5		CMP4_2P\AD3				GPIO\比较器正端输入\ADC信号输入
20	PC.1	5	50ns	CMP4_2N\AD2		INT7		GPIO\比较器负端输入\ADC信号输入\外部中断,滤波50ns
21	PC.3	5		CMP4_1P\AD1				GPIO\比较器正端输入\ADC信号输入
22	PC.4	1/0	50ns	CMP4_1N\AD0		INT8		GPIO\比较器负端输入\ADC信号输入\外部中断,滤波50ns
23	VDD15	Р						内部1.5V输出,需外接0.1uF滤波电容
24	PC.6	5	50ns	TIMO	TIM8_CH4	INT0	TIM8_BKIN	GPIO\Timer输出输入\Timer8_CH4\外部中断,滤波50ns\TIM8_BKIN
25	LO3	0						Low side gate driver outputs
26	HO3	0						High side gate driver outputs
27	LO2	0						Low side gate driver outputs
28	HO2	0						High side gate driver outputs

关于 PA.7(PA.5)引脚 PIN 的使用说明如下:

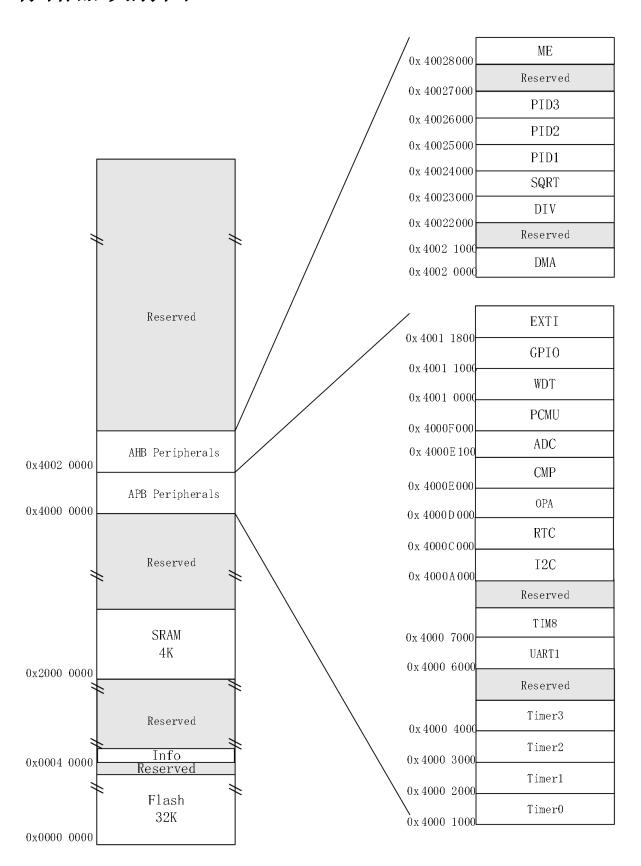
1、	AMPO_N\AD9 为 PA.5 的第一复用功能,PA.5 与 PA.7 内部互连。
2、	在使用 PA.7 引脚的 GPIO 功能时,注意要先设定 PA.5 为高阻态,才能不受影响
3、	在使用其它复用功能时,可直接设定 PA.5 为高阻态。
4、	当 AD9 和 AD7 同时使用时,只能采样同一信号
5、	当 AMP0_N 和 AMP1_N 同时使用时,放大器 N 端只能为同一信号
6、	上电时应为高阻态

- 注: 1. I=输入; O=输出; P=电源; G=地。
 - 2. 芯片引脚选择 GPIO 功能:

若方向寄存器配置为输出,开漏 OD 功能配置控制有效,上拉控制无效; 若方向寄存器配置为输入,开漏 OD 功能控制无效,上拉控制有效;

3. 芯片引脚选择复用功能:

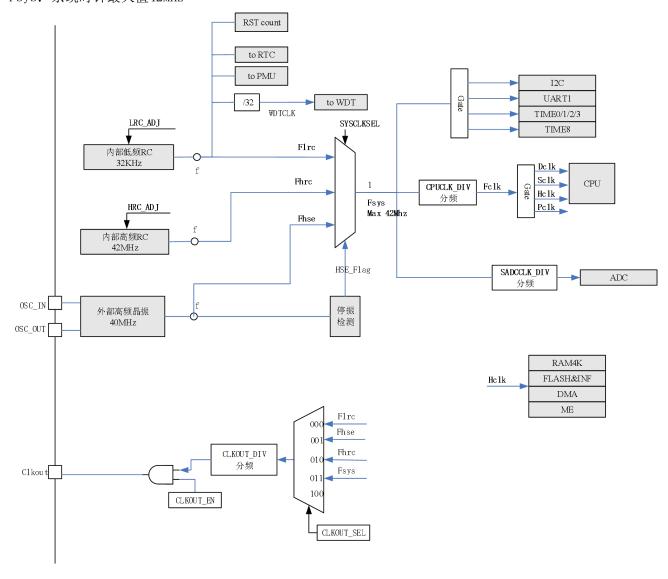
复用功能的数字输出引脚都可配开漏功能(Open Drain), 上拉功能配置无效。 复用功能的数字输入引脚都可配上拉功能, 开漏功能无效; 若配置为模拟输入 OD 控制和上拉控制都无效;


- 4. 端口数据寄存器 PTDAT 说明及数据读取
- 1) 芯片引脚选择 GPIO 功能或复用数字功能 若方向寄存器配置为输出,PTDAT 读取值为寄存器设置值,不随外部 PIN 脚电平变化而变化; 若方向寄存器配置为输入,PTDAT 读取值为 PIN 脚状态值,反映外部 PIN 脚电平变化;
- 2) 芯片引脚选择复用模拟功能 PTDAT 相应 bit 位值, 固定为 0

缩略语	英文原文	中文含义
WDT	Watch Dog Timer	看门狗
GPIO	General Purpose IO	通用 I/0
LVD	Low Voltage Detect	低电压检测
POR	Power On Reset	上电复位
BOR	Brown Out Reset	掉电复位
WKR	Wakeup Reset	唤醒复位
PMU	Power Management Unit	系统电源管理单元
CMU	Clock Management Unit	系统时钟管理单元
RTC	Real Time Clock	实时时钟

存储器映射图

时钟框图


时钟符号说明:

Flrc: 内部低频 RC 时钟(32KHz), 也作为看门狗时钟源。

Fhrc: 内部高频RC时钟(42MHz),系统复位后默认运行在Fhrc。

Fhse:外部高频OSC晶振时钟(40MHz)。

Fsys: 系统时钟最大值42MHz

电气特性

1.1 绝对最大额定值

加在器件上的载荷如果超过'绝对最大额定值'列表(表 1、表 2、表 3)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表1电压特性

符号	描 述	最小值	最大值	单 位
V _{DD} - Vss	外部主供电电压(包含 VDDA 和 VDD)(1)	-1	6.5	V
Vin	所有引脚上的输入电压(2)	-0.1VDD	1.1VDD	V
ΔV_{DDx}	不同供电引脚之间的电压差	-	50	m)/
Vssx - Vss	不同接地引脚之间的电压差	-	50	mV

- 1.所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部允许范围内的供电系统上。
- 2.保证 V_{IN} 不超过其最大值

表 2 电流特性

符号	描述	条件	最大值	单位	
IVDD		VCC=3.3V	50		
IVDD	生足 VDD/ VDDA 电源线的态电弧(保座电弧)(1)	VCC=5V	50		
lvoo	经过 Vss 地线的总电流(流出电流) (1)	VCC=3.3V	50		
Ivss	生是 VSS 地线的芯电视(加山电视) (1)	VCC=5V	50	mA	
	任意 I/O 和控制引脚上的输出灌电流	VCC=3.3V	4.4	IIIA	
lio	任息 1/0 和控制分解工的拥工准电机	VCC=5V	8.9		
ПО	// 李 I/O 和校组引册上始於山市滋	VCC=3.3V	6		
	任意 I/O 和控制引脚上的输出电流	VCC=5V	12		

1.所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部允许范围内的供电系统上。

表 3 温度特性

符号	描述	数值	单位
Тѕтс	储存温度范围	-65 ~ + 150	°C
T_J	最大结温度	150	°C

1.2 通用工作条件

表 4 通用工作条件

符号	参数	条件	最小值	最大值	单 位
fHCLK	内部 AHB 时钟频率	-	-	42	MHz
V _{DD(1)}	标准工作电压	-	2.5	5.5	V

Vin	所有引脚上的输入电压	-	-0.1VDD	1.1VDD	
T _A	环境温度	最大功率耗散	-40	85	°C
TJ	结温度范围	-1007 4 74 1 31 BHZ	-40	85	Ů

^{1.}要求使用相同的电源为 VDD 和 VDDA 供电

1.3 上电和掉电时的工作条件

下表给出的参数是在一般工作条件下测试得出。

表 5 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单 位
tvdd	V _{DD} 上升速率	VCC=5V	0.8	-	· µs/V
	V _{DD} 下降速率	VCC-3V	20	-	

1.4 内嵌复位和电源控制模块特性

下表给出的参数是在一般工作条件下测试得出表 6 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单 位	
		C_VSYS[1:0]=00 (上升沿)	2.29	2.32	2.33		
		C_VSYS[1:0]=00 (下降沿)	2.08	2.08	2.12		
	可始和始中区	C_VSYS[1:0]=01 (上升沿)	2.87	2.87	2.94		
VSYS DET	可编程的电压 检测器的电平	C_VSYS[1:0]=01 (下降沿)	2.70	2.71	2.74	V	
VSTS_DET	位 例 奋 的 电 十 选择	C_VSYS[1:0]=10 (上升沿)	3.66	3.66	3.73	V	
	VSYS DET	C_VSYS[1:0]=10 (下降沿)	3.47	3.5	3.53		
		C_VSYS[1:0]=11 (上升沿)	4.29	4.3	4.34		
		C_VSYS[1:0]=11 (下降沿)	4.06	4.06	4.13		
VSYShyst(1)		VCC=5V	160	240	240	mV	
Vpop# pop	上电/掉电复位	上升沿	1.8	1.95	2.15	V	
Vpor/lbor	阀值	下降沿	1.65	1.8	1.98	V	
VLBORhyst(1)	LBOR 迟滞	-	-	150	-	mV	
TRSTTEMPO(1)	复位持续时间	VCC=5V	1.14	2	4.4	ms	

^{1.}由设计保证,不在生产中测试。

1.5 内置参考电压

下表给出的参数是在一般工作条件下测试得出表7内置参考电压

符号	参数	条件	最小值	典型值	最大值	单 位
VREFINT 内	内置参照电压	-40°C < T _A < +125°C,VDD=3.3V	1.19	1.2	1.24	٧
	内且参照电压	-40°C < T _A < +125°C,VDD=5V	1.19	1.2	1.4	单位 V V µs
TS_vrefint(1)	当读出内部参照电压时, ADC 的采样时间	T _A = 25°C,3.3V≪VDD≪5V	0.142	1	48.8	μs
T _{COEFF(2)}	温度系数	-40°C < TA < +125°C	-	-	382	ppm/°C

^{1.}最短的采样时间是通过应用中的多次循环得到。

1.6 供电电流特性

表 8 运行模式下的最大电流消耗,数据处理代码从内部 RAM 或 FLASH 中运行。

符				最小值	典型值		最大值		
号	参数	条件	fнськ	T _A = -40°C	T _A = 25°C	T _A = 85°C	T _A = 105°C	T _A = 125°C	单位
睡眠 模式 IDD 下的 供应 电流	-40°C < T _A <+125°C,VDD=3.3V	32KHz	2	2.3	5.5	10	19		
	-40°C < T _A < +125°C,VDD=5V	32KHz	2.3	2.6	5.9	10.5	20		
	-40°C < T _A < +125°C,HRC ON,LDO_1P5 ON,VDD=3.3V	32KHz	137	150	170	188	222		
		-40°C < T _A < +125°C,HRC ON,LDO_1P5 ON,VDD=5V	32KHz	138	152	174	190	224	
	待机 模式	-40°C < T _A < +125°C,HRC OFF,LDO_1P5 ON,VDD=3.3V	32KHz	21	28	45	62	93	uA
IDD	下的 供应 电流	-40°C < T _A < +125°C,HRC OFF,LDO_1P5 ON,VDD=5V	32KHz	22	30	47	63	94	
		-40°C < T _A < +125°C,HRC OFF,LDO_1P5 OFF,VDD=3.3V	32KHz	2.4	3	12	25	52	
		-40°C < T _A < +125°C,HRC OFF,LDO_1P5 OFF,VDD=5V	32KHz	2.7	3.5	12.7	26	53	

1.7 外部时钟源特性

下表中给出的特性参数是使用一个高速的外部时钟源测得。 表 9 高速外部用户时钟特性

^{2.}由设计保证,不在生产中测试。

符号	参数	条件	最小值	典型值	最大值	单位	
f	用户外部时钟频率(1)	VCC=3.3V	1		56	NAL I-	
fHSE_ext	用广外部的钾频率等	VCC=5V	1		40	MHz	
VHSEH	OSC_IN 输入引脚高电平电压	VCC=3.3V	0.1				
VHSEH	U3U_IN	VCC=5V	0.3			V	
Vivo	OSC IN 於入刊期代由亚由压	VCC=3.3V			3.2	V	
VHSEL	OSC_IN 输入引脚低电平电压	VCC=5V			4.7	1	
tw(HSE)	OSC_IN 高或低的时间 ⁽¹⁾	VCC=3.3V	16.25				
tw(HSE)	USU_IN 同致似的时间 ⁽¹⁾	VCC=5V	16.25			no	
t ten	OCC IN L 1 式工购的时间(1)	VCC=3.3V			78	ns	
tr(HSE) tf(HSE)	OSC_IN 上升或下降的时间 ⁽¹⁾	VCC=5V			78	1	
0	OCC IN 於) 家长(1)	VCC=3.3V		7		C	
Cin(HSE)	OSC_IN 输入容抗 ⁽¹⁾	VCC=5V		7		pF	
DuCyguan	上京以	VCC=3.3V	45		55	0/	
DuCy(HSE)	占空比	VCC=5V	45		55	%	
	OCC IN 於)尼由济	VCC=3.3V	4		11		
Iι	OSC_IN 输入漏电流	VCC=5V	36		40	μΑ	

1.由设计保证,不在生产中测试。

表 10 HSE 40MHz 振荡器特性(1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率	-		40		MHz
R _F	反馈电阻	-	-	300	-	kΩ
С	建议的负载电容	-	12	-	18	pF
i ₂	HSE 驱动电流	V _{DD} =5V,40MHz		1.1		mA
g m	振荡器的跨导	启动	3.56	5.84	7.39	mA/V
tsu(HSE)	启动时间	V _{DD} 是稳定的,40MHz	-	1.4	-	ms

- 1.谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2.由综合评估得出,不在生产中测试。

1.8 内部时钟源特性

高速内部(HSI)RC 振荡器

表 11 HSI 振荡器特性(1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率	-	-	42	-	MHz
DuCy _(HSI)	占空比	-	45	1	55	
ACC.	HSI 振荡器的精	使用 HRCADJ 寄存器来校准精度	-	-	±1 ⁽²⁾	%
ACC _{HSI}	度	工厂校准 ⁽³⁾⁽⁴⁾ TA=-40 to 125℃	-3.9	1	2.3	
touruon	HSI 振荡器启动			10		116
tsu(HSI)	时间	-		10		μs

IDD(HSI)	HSI 振荡器功耗	_	91	uА	l
100(1131)	1101 1/10/2017 7/17 1	_	J 01	μ/\	

- 1. VDD = 3.3V, TA = -40~125°C, 除非特别说明。
- 2.由设计保证,不在生产中测试。
- 3.由综合评估得出,不在生产中测试。
- 4. HSI 振荡器的实际频率可能会受到回流的影响,但不超出规定的频率的范围内。

低速内部(LSI)RC 振荡器

表 12 LSI 振荡器特性(1)

符号	参数	条件	最小值	典型值	最大值	单位
fLSI(2)	频率	-	23	32	42	kHz
ACC _{HSI}	HSI 振荡器的精度	使用 HRCADJ 寄存器来校准精 度	-	-	±1 ⁽²⁾	
, roomsi		工厂校准 ⁽³⁾ TA=-40 to 125℃	-5.6	-	4.4	
tsu(LSI)	LSI 振荡器启动 时间	-		70		μs
IDD(LSI)	LSI 振荡器功耗	-		0.3		μΑ

- 1. VDD = 3.3V, TA = -40~125°C, 除非特别说明。
- 2. 由综合评估得出,不在生产中测试。

从低功耗模式唤醒的时间

表 13 低功耗模式的唤醒时间

符号	参数	条件	典型值	单位
turnor EEDOW	从睡眠模式唤醒	VCC=3.3V	2.08	mo
twusleep9(1)	<u> </u>	VCC=5V	2.08	ms
4	11 往扣 措 子吸頭	VCC=3.3V	2.1	
twuhold (1)	从待机模式唤醒	VCC=5V	2.1	μs

^{1.} 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

1.9 存储器特性

表 14 存储器特性

符号	参数说明	最小	典型	最大	单位
FlashSize	Flash 空间大小	-	32	ı	kbytes
InfoSize	Information Block 空间大小	-	2	-	kbytes
RamSize	Ram 空间大小	-	4	ı	kbytes
Tflashrd	Flash 字节读取时间	-	-	40	ns
Tflashwr	Flash 字节写时间	20	-	-	us
Tflashper	Flash 页擦除时间	2	-	ı	ms
Tflashmer	Flash 全擦除时间	10	-	ı	ms
FPageSize	Code Flash 页面大小	_	1	_	kbytes/page

http://www.rxtek-icore.com Page 15 of 22 Rev1. 3

InPageSize	Information Block 页面大小	-	2	-	kbytes/page
Numwr	擦写次数	100K	-	-	次
Tdat	数据保持时间	10	ı	ı	years
Tmprun	操作温度	-40	-	85	$^{\circ}$
Vram	RAM 数据保持电压	_	1. 35	-	V

1.10 EMC 特性

敏感性测试是在产品的综合评估时抽样进行测试的。

功能性 EMS(电磁敏感性)

表 15 EMS 特性

符号	参数	条件	级别/类型	
Vesan	施加到任一 I/O 脚,从而导致功能错误的电压	V _{DD} = 5V,T _A = +25 °C,f _{HCLK} = 42MHz。空	±4000V	
VFESD1	极限。	气放电	±4000V	
\/	施加到任一 I/0 脚,从而导致功能错误的电压	VDD = 5V, TA = $+25$ °C, fHCLK = 42 MHz $_{\circ}$	12500\/	
VFESD2	极限。	接触放电	±2500V	

1.11绝对最大值(电气敏感性)

基于三个不同的测试(ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电(ESD)

静电放电(一个正的脉冲然后间隔一秒钟后一个负的脉冲)施加到所有样品的所有引脚上,样品的大小与芯片上供电引脚数目相关。这个测试符合 JEDEC JS-001-2017/JS-002-2018 标准。

表 16 ESD 绝对最大值

符号	参数	条件	等级	最大值(1)	单位
Vesd(HBM)	静电放电电压(人体模型)	T _A = +25 °C,符合 JEDEC EIA/ JESD22 - A114	3A	±5000	V
VESD(CDM)	静电放电电压(充电设备模型)	T _A = +25 °C,符合 JEDEC JS-002-2018	C3	±1200	

静态闩锁

表 17 电气敏感性

符号	参数	条件	最大值	单位
LU	静态闩锁类	T _A = +125 °C,符合 JEDEC 78E	±200	mA

1.12 I/O 端口特性

通用输入/输出特性

表 18 I/O 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
VIL(1)	输入低电平电压	VDD=3.3V	0.92	-	1.07	V

		VDD=5V	1.36	-	1.59	
	输入高电平电压	VDD=3.3V	1.83	-	1.99	V
VIH(1)	柳八同里丁里瓜	VDD=5V	2.65	-	2.91	V
M. a	标准I/O 脚施密特触发器电压迟滞	VDD=3.3V	0.76		1.05	V
Vhys(1)	(4)	VDD=5V	1.13		1.55	V
Devi	起上长盆为中四(7)	VDD=3.3V	71.7		76.7	
Rpu	弱上拉等效电阻 ⁽⁷⁾	VDD=5V	45.0		47.6	1.0
Rpd	弱下拉等效电阻(7)	VDD=3.3V	54.1		56.9	kΩ
	纵广红守双电阻"/	VDD=5V	35.5		36.8	

1.基于设计仿真得出数据

输出电压特性

表 19 输出电压特性

符号	参数	条件	最小值	最大值	单位
loouroo	当 Vio=0.9VDD 时,IO 推挽输出高电平	VDD=3.3V	4.4	4.5	
Isource	当 110-0.9100 时,10 推拢制山同电 1	VDD=5V	8.9	9. 1	m A
loupk	当 Vio=0.1VDD 时,IO 推挽输出低电平	VDD=3.3V	6.9	7	mA
Isunk	当 ¥10-0.1¥DD ¤1,10 推拢制击版电干	VDD=5V	13.8	13. 9	

输入输出交流特性

表 20 输入输出交流特性

符号	参数	条件		典型值	最大值	单位	
		无负载,VDD=3.3V	-		21		
		无负载,VDD=5V	-		21		
fmay/IO) aut	最大频率⑵	$C_L = 33 \text{ pF}, V_{DD} = 3.3 \text{V}$	-		21	MHz	
fmax(IO)out	取入则华	$C_L = 33 \text{ pF}, V_{DD} = 5V$	-		21	IVIMZ	
		$C_L = 56 \text{ pF}, V_{DD} = 3.3 \text{V}$	-		21	ł I	
		$C_{L} = 56 \text{ pF}, V_{DD} = 5V$	-		21		
+f/IO)out	输出高至低电平的下降时间	$C_L = 20 \text{ pF}, V_{DD} = 3.3 \text{V}$	20		21.2		
tf(IO)out	制工局主版电平的下降的问	$C_{L} = 20 \text{ pF}, V_{DD} = 5V$	18.2		19	200	
+r/IO\0.u+	於山瓜五言中亚的 上孔叶词	$C_L = 20 \text{ pF}, V_{DD} = 3.3 \text{V}$	21.6		23.2	ns	
tr(IO)out	输出低至高电平的上升时间	$C_L = 20 \text{ pF}, V_{DD} = 5V$	19.2		19.6		
		VCC=3.3V,打开滤波器 50ns	50	50	55		
.5)/TI	FVTI 校组织私训团队 初冷 P K 内卒 库	VCC=3.3V,打开滤波器 80ns	80	80	88	ns	
tEXTIpw	EXTI 控制器检测到外部信号的脉冲宽度	VCC=5V,打开滤波器 50ns	50	50	56		
		VCC=5V,打开滤波器 80ns	80	80	91		

1.13 NRST 引脚特性

NRST 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻, R_{PU} 表 21 NRST 引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
VIL(NRST) (1)	NRST 输入低电平电压	VDD=3.3V	-0.5	ı	1.09	
VIL (MKS1) (1)	MM31 相八队电「电压	VDD=5V	-0.3	ı	0.76	
VIH(NRST) (1)	NRST 输入高电平电压	VDD=3.3V	2. 52	ı	3.6	V
V1H (NK51) (1)	MOI 柳八同电千电压	VDD=5V	3.91	ı	5. 5	V
Vhys(NRST)	NRST 施密特触发器电压		-	1.72	-	
VIIYS (NK51)	迟滞	VDD=5V	-	2.73	-	
RPU	弱上拉等效电阻 ^②	VDD=3.3V	_	9.3	ı	kΩ
Kru	羽工拉寺双电阻	VDD=5V	-	8.97	-	К7.2
VF (NRST)	NRST 输入滤波脉冲	VDD=3.3V	-	1.8	-	
VF (NKS1)	NKST #II/\#\io\X\\\A\\\	VDD=5V	_	1.1	ı	
VNF (NRST)	NDCT ฝ) 北京市中央	VDD=3.3V	_	1.9	-	us
VINT (INKS1)	NRST 输入非滤波脉冲	VDD=5V	_	1.2	-	

1.14 TIM 定时器特性

表 22 TIM 特性

符号	参数	条件	最小值	最大值	单位
, ,		_	1	-	tTIMxCLK
tres(TIM)	定时器分辨时间	fTIMxCLK = 42MHz	23. 8	-	ns
	CH1 至 CH4 的定时器外	-	0	fTIMxCLK/2	MHz
fEXT	部时钟频率			MHz	
$Res_{\scriptscriptstyleTIM}$	定时器分辨率	1	ı	16	位
tCOUNTER	当选择了内部时钟时,	-	1	65536	tTIMxCLK
tCOUNTER	16 位计数器时钟周期	fTIMxCLK = 42MHz	0. 0238	1560	μs
+MAY COUNT	最大可能的计数	-	-	65536 x 65536	tTIMxCLK
tMAX_COUNT	取八門 配門 印刻	fTIMxCLK = 42MHz	-	102. 2	S

1.15 12 位 ADC 特性

表 23 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
VDDA	供电电压	-	2.5	-	5.5	V
fADC(2)	ADC 时钟频率	-	0.5	-	14	MHz
fS	采样速率	-	0.036	-	1	MHz
fTRIG(2)	外部触发频率	$f_{ADC} =$	-	-	700	kHz

		14MHz	-	-	20	1/f _{ADC}
V AIN	转换电压范围	-	0	-	VREF+	V
RAIN	外部输入阻抗	-	-	-	100	kΩ
RADC	采样开关电阻	VDD=3.3-5V	1	-	1.05	kΩ
CADC	内部采样和保持电容	-	-	10	-	pF
tS(2)	采样时间	一般通道	2	-	256	1/f _{ADC}
tCONV(2)	总的转换时间(包括采样	-	-	-	12	1/f _{ADC}
	时间)					

- 1.由综合评估保证,不在生产中测试。
- 2.由设计保证,不在生产中测试。
- 表 24 fADC=14MHz(1)时的最大 RAIN

7(2) HBC 1 HHE(1) HJ4/7(10 HI)					
T _S (周期)	t₅(μs)	最大 R _{AIN} (kΩ)			
2	0.142	0.463917526			
4	0.284	1.927835052			
8 0.568		4.855670103			
16	1.136	10.71134021			
32	2.272	22.42268041			
64	4.544	45.84536082			
128 9.088		92.69072165			
256	18.176	186.371134			

1.由设计保证,不在生产中测试。

表 25 ADC 精度 - 局限的测试条件

符号	参数	测试条件	典型值	单位
ET	综合误差		±41	
EO	偏移误差	fsys=42MHz, f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω , V_{DDA}	27.5	
EG	增益误差	= 3.3~5V,T _A = 25 °C,测量是在 ADC 校准之后	6.4375	LSB
ED	微分线性误差	进行的。	±2	
EL	积分线性误差		±6	

1.16 比较器 CMP

表 26 比较器性能参数

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD5	-	-	2.4	3.3	5.5	V
		VDD=3.3V,极低速率	-	26	-	
		VDD=3.3V,低速率	-	38	-	
ICC	工作电流	VDD=3.3V,中等速率	-	60	-	
ICC		VDD=3.3V,高速率	-	100	-	uA
		VDD=5V,极低速率	-	26	-	
		VDD=5V,低速率	-	38	-	

		VDD=5V,中等速率	_	60	_	
		VDD=5V,高速率	-	100	-	
VTH	阀值电压	VTH[3:0]	-	VDD/2	-	V
VOS	输入补偿电压	-	-10	-	10	mV
		ICC=100uA V(INP)-V(INN)=100mV	162		170	
		ICC=100uA V(INP)-V(INN)=-100mV	150		150	
		ICC=60uA V(INP)-V(INN)=100mV	204		206	
Tues	VCM=VDD/2	ICC=60uA V(INP)-V(INN)=-100mV	194		216	
Tres		ICC=38uA V(INP)-V(INN)=100mV	284		308	ns
		ICC=38uA V(INP)-V(INN)=-100mV	280		302	
		ICC=26uA V(INP)-V(INN)=100mV	540		594	
		ICC=26uA V(INP)-V(INN)=-100mV	556		614	
		极低速率	-	0	-	
\	信号由低到高 的迟滞	低速率	5	5	11	
VHY(rise)		中等速率	1	10	15	
		高速率	15	20	29	mV
		极低速率	-	0	-	IIIV
VHY(fall)	信号由高到低	低速率	1	5	7	
viii(lall)	的迟滞	中等速率	5		7	
		高速率	19	20	25	

1.17 PGA

表 27 PGA 性能参数表

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD5	电源电压	-	2.5	3.3	5.5	V
ICC	工作电流	Gain=8,VCC=3.3V	0.4	4	1	mA
icc icc		Gain=8,VCC=5V	0.4			IIIA
CMIR	共模输入电压	-	0	-	VDDA	V
VOLR	输出电压范围	-	VSS+0.2	-	VDD-0.2	V
RINDIF(1)	不同输入阻抗	-	1	-	24.5	ΚΩ
TCT/1)	稳定时间	稳定时间 与最终值相差 1% (CLOAD=10pF)	116	142	179	20
TST(1)			110	142		ns
Av	放大倍数	-	-	2	-	V/V

			-	4	-	
			_	8	_	
PGA gain	PGA 放大误差	输入阻抗为 0, 补偿	-4	_	2	%
error	1 0/1/3/// 1/12	值已经校正	•		_	,,

^{1.}由设计保证,不在生产中测试。

1.18 VDD15

表 28 VDD15 性能参数

参数	测试条件	最小值	典型值	最大值	单位
	-40°C <ta<+125°c,vdd=3.3v< td=""><td></td><td>1.5</td><td></td><td>\/</td></ta<+125°c,vdd=3.3v<>		1.5		\/
-	-40°C <ta<+125°c,vdd=5v< td=""><td></td><td>1.5</td><td></td><td>V </td></ta<+125°c,vdd=5v<>		1.5		V
VDD15 负载电 -40℃ <ta<+125℃< td=""><td>4000 74 40500</td><td></td><td></td><td></td><td></td></ta<+125℃<>	4000 74 40500				
	-	-	40	mA	
	- VDD15	-40°C <ta<+125°c,vdd=3.3v -40°C<ta<+125°c,vdd=5v VDD15 负载电 -40°C<ta<+125°c< td=""><td>-40°C<ta<+125°c,vdd=3.3v -40°C<ta<+125°c,vdd=5v VDD15 负载电 -40°C<ta<+125°c -<="" td=""><td>-40°C<ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - -</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<></td><td>-40°C<ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - - 40</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<></td></ta<+125°c></ta<+125°c,vdd=5v </ta<+125°c,vdd=3.3v </td></ta<+125°c<></ta<+125°c,vdd=5v </ta<+125°c,vdd=3.3v 	-40°C <ta<+125°c,vdd=3.3v -40°C<ta<+125°c,vdd=5v VDD15 负载电 -40°C<ta<+125°c -<="" td=""><td>-40°C<ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - -</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<></td><td>-40°C<ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - - 40</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<></td></ta<+125°c></ta<+125°c,vdd=5v </ta<+125°c,vdd=3.3v 	-40°C <ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - -</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<>	-40°C <ta<+125°c,vdd=3.3v< td=""> 1.5 -40°C<ta<+125°c,vdd=5v< td=""> 1.5 VDD15 0 负载电 -40°C<ta<+125°c< td=""> - - 40</ta<+125°c<></ta<+125°c,vdd=5v<></ta<+125°c,vdd=3.3v<>

1.19 三相驱动器

通用工作条件

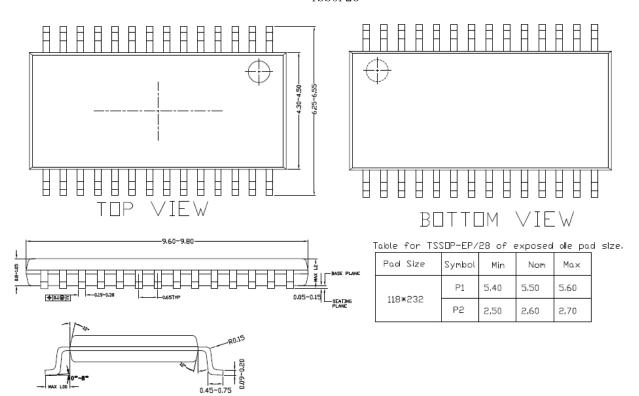
(VCC=24V, CL=1nF, TA=25 $^{\circ}$ C)

符号	参数	最小值	最大值	单位
VCC	电源电压	10	28	V
VHO	上桥输出电压	6. 5	VCC	V
VLO	下桥输出电压	0	5	V
$V_{\scriptscriptstyle \mathrm{IN}}$	逻辑输出电压(HIN & LIN)	0	5	V
FPWM	PWM 转换频率 1nF		50	KHz

静态电气特性

(VCC=24V, CL=1nF, TA=25℃)

符号	参数	条件	最小值	典型值	最大值	单位
IQCC	VCC静态电流	HIN=LIN=OV	0.3	0.5	1.0	mA
V _{DD}	VDD 输出电压		4.3	_	5. 5	V
VIH	逻辑 "1" 输入电压		2.2	_	_	V
VIL	逻辑 "0" 输入电压		_	_	0.6	V
VHO	HO 输出电压	HIN=5V	VCC-11.5	VCC-10	VCC-8.5	V
	1114 124	10V< VCC <14V	6.5		-	V


驱动 NMOS 功率管(测试条件:VCC2=24V, TA=25℃)							
参数 最小值 典型值 最大值 单位							
输入电阻	40	50	60	Ω			
下拉电阻 16 20 24 KΩ							

睿兴科技 (南京) 有限公司 Page 21 of 22

封装图

